
Quantum covariant bit threads

Sreeman Reddy Kasireddy
Based on 2 upcoming papers with Matthew Headrick & Andrew Rolph

‘Quantum bit threads 2’ & ‘Quantum covariant bit threads’
Slides at www.ksr.onl/slides

Weizmann Institute of Science

ICTS String Seminar 23 July 2025

Sreeman QCBT 1 / 45

https://ksr.onl/slides/


Table of Contents

1 Review: Holographic Entanglement Entropy

2 Review: Bit thread prescriptions

3 Quantum Covariant Bit Threads
Proof
Applications

Sreeman QCBT 2 / 45



Review: Holographic Entanglement Entropy

Intro

It is generally hard to compute Entanglement Entropy SvNE = − tr(ρ ln ρ)
for QFTs. But for gapped large-N CFTs, we have a semiclassical
holographic description, making things easier.

Recall the main result of Black Hole Thermodynamics (QFT in curved
spacetime):

SBH =
c3A

4Gh̄
=

A

4

1 SBH is often called the “classical” entropy of a black hole but strictly
speaking the proportionality constant diverges as h̄ → 0.

This diverging quantity will always increases due to the second law of
thermodynamics since the outside entropy is negligible. This was
rigorously proved by Hawking. Even when black hole energy or mass
decreases like in Penrose process, the area increases.
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Review: Holographic Entanglement Entropy

Killing horizons are extremal surfaces

Figure: Left: Penrose diagram of two-sided static asymptotically AdS black hole.
Right: The induced wormhole geometry on the Cauchy slice σ.

Note that BH event horizons are also extremal surfaces in t = const
Cauchy slices. This can be generalized to other Killing horizons, such as
the Hubble sphere r =

√
3/Λ for de Sitter space. Note the sign flip

between r , t for both Killing horizons.

ds2 =

(
1− Λ

3
r2
)
dt2 − 1(

1− Λ
3 r

2
)dr2 − r2dΩ2
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Review: Holographic Entanglement Entropy

Generalized entropy

If matter is quantum instead of classical then there will be Hawking

radiation corresponding to TH =
κ

2π
=

1

8πM
. A no longer increases but

Sgen still increases.

Sgen =
A

4GN
+ Sout

1 The area term is O(h̄−1) but once we add Sout its accurate up to all
orders of h̄.

2 UV finiteness: Most of the entanglement is short-ranged, in the
lattice approximation nearby lattice sites so there is a generic
“area-law” divergence A

ϵ2UV
in Sout. The “infinite renormalization of

GN”:
1

4GN
→ 1

4GN
− 1

ϵ2UV
cancels that out making the formula UV

finite. Note: Gravity is classical. 1
4GN

changes due to the back
reaction of matter UV divergences. ϵUV is matter UV cutoff.
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Review: Holographic Entanglement Entropy

RT formula (Ryu–Takayanagi 2006)

HEE is a generalization of black hole thermodynamics but instead of just
Killing horizons we assign entropy to all extremal surfaces.

S(A) = min
γ

Area(γ)

4GN

Its not necessary for spacetime to be static. A Cauchy slice σ with time
reflection symmetry is enough. γ is any surface on this Cauchy slice that is
homologous to A. We can interpret SBH as HEE such that in that case ∂A
and ∂Ac are null sets.
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Review: Holographic Entanglement Entropy

RT properties

Main difference: RT= fine grained (microstate) vs SBH= coarse grained
(macrostate). 2nd law of thermodynamics = total entropy (ignorance
about the universe) keeps increasing but not if you already know every
microscopic detail in which case it remains constant under unitary time
evolution. In the 2 sided static black hole both are the same.

Figure: Subregion duality and error correction
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Review: Holographic Entanglement Entropy

RT properties

Strong subadditivity:

S(AB) + S(BC ) ≥ S(B) + S(ABC )

Sreeman QCBT 8 / 45



Review: Holographic Entanglement Entropy

Multiple extremal surfaces
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Review: Holographic Entanglement Entropy

Covariant HRT formula (Hubeny Rangamani Takayanagi
2007)

We need to find extremal spacelike surface homologous to A.

S = ext
γ

[
Area(γ)

4GN

]
Maximin prescription (Wall 2012)

S−(A : B) := sup
σ∈S

inf
γ∈Γσ

[
Area(γ)

4GN

]
Minimax prescription (Headrick Hubeny 2022)

S+ = inf
τ∈T

sup
σ∈S

[
Area(σ ∩ τ)

4GN

]
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Review: Holographic Entanglement Entropy

Time sheets: natural alternatives to Cauchy slices

Just like Cauchy slices must contain A in their boundary, the time sheets
we consider must touch ∂A but not necessarily ∂D(A). A time-sheet τ is a
piecewise-timelike hypersurface.
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Review: Holographic Entanglement Entropy

Causal structure

Covariant HRT formula has causal structure encoded in it. On both sides
we should now attribute the entropy to D(A) the domain of dependence of
A and domain of dependence of rγ

HRT
(entanglement wedge W(A)). In the

below the causal wedge is contained inside W(A).

Subregion duality: Just like HEE is a vast generalization of SBH ,
AdS/CFT is a vast generalization of HEE. HEE just says that EE of ρA
maps to an extremal bulk surface. AdS/CFT says the whole ρA maps to
W(A).
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Review: Holographic Entanglement Entropy

QES formula (Engelhardt Wall 2014)

We can generalize Sgen from Killing horizons to “quantum” extremal
surfaces. Gravity = classical and Matter = Quantum.

Sgen = min
γ

[
Area(γ)

4GN
+ Sbulk(rγ)

]

1 UV finite: Same as black hole.

2 IR divergences: UV divergences in CFT match with the IR divergence
in AdS. To get IR finite quantities we need to always use the mutual
information I (A : B) = S(A) + S(B)− S(AB). See fig 9.
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Review: Holographic Entanglement Entropy

Generalisations of HEE

1 Beyond AdS : Bousso Penington 2208.04993, Witten et al 2206.10780
von Neumann algebra approach, Pseudo and timelike entropy by
Takayanagi et al 2302.11695, Shaghoulian Susskind 2201.03603 etc.

2 Pennington et al 2501.08308 proposed a generalization when gravity
is quantum. They only studied the first-order correction ĥµν . Area is
promoted to an operator.

All these QES generalizations are very speculative. There are other related
speculative proposals like Complexity=Volume or Action etc. But unlike
these RT/HRT/QES are on proven from ZAdS = ZCFT and are on firm
footing.
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Review: Holographic Entanglement Entropy

Proof (Original: Lewkowycz Maldacena Simpler: Xi Dong)

Replica trick: n → 1+ for Sn
A = 1

1−n logTr ρ
n
A. But we need to use

S̃n
A = Sn

A + n(n − 1)∂nS
n
A as they have better holographic interpretation.

To calculate TrρnA we need to take n copies of the manifold and cut the
region A in each and then glue those copies together as shown and
calulcate the path integral. It gives that the Modular Rényi entropies are
just the area of codimension 2 cosmic branes with tension T = n−1

4nGN
. This

tension back reacts. Example: In AdS3/CFT2, its a massive particle whose
spacelike geodesic we need to find without assuming test mass limit.
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Review: Bit thread prescriptions

Classical Static Bit Threads (Freedman Headrick 2016)

Basic idea: We consider all possible flows in the spacetime that have a
norm bound and try to maximize the flux on the boundary subregion A
then this maximum possible flux is just A

4 or entanglement entropy.

∇µv
µ = 0 , |v |≤ 1

4GN
.∫

γ
v :=

∫
γ

√
h nµv

µ ,

⇒ nµv
µ ≤ 1

4GN
⇒
∫
γ
v ≤ Area(γ)

4GN
.∫

A
v =

∫
γ
v ≤ Area(γ)

4GN

sup
v

∫
A
v ≤ inf

γ

Area(γ)

4GN
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Review: Bit thread prescriptions

This inequality is always saturated due to the max-flow min-cut theorem
in optimization theory. The main difference between the popular discrete
graphs case and this is that our spacetime is continuous.
Intuition: If water is going on a pipe then the maximum flux is decided by
the minimal surface in the pipe.

Optimal flows: Highly non unique. The only thing we can say about the
flux is its values on γ

RT
. On γ

RT
it saturates the norm bound and is in the

direction of n. Except γ
RT
, at the remaining places it has a lot of freedom.

We can always chose an optimal flow bit thread set such that during a
phase transition they don’t jump and vary continuously unlike minimal
surfaces which jump.
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Review: Bit thread prescriptions

Quantum Static Bit Threads (Rolph 2021)

Intuition: Each bit thread (integral curves of the flow) is a single qubit
worth of entanglement between A and Ā. But in that case, there was no
entanglement between the 2 bulk regions. Once we introduce
entanglement between the bulk regions, we need to allow for bit
threads to start or end on the bulk. In the original case, bit threads
started or ended only on the boundary, as entanglement was only present
in the boundary theory and not in bulk theory. ER=EPR conjecture
gives another interpretation where such a bit thread can be considered
jumping via a Planck-sized wormhole.
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Review: Bit thread prescriptions

Quantum Static Bit Threads

The QSBT prescription is

S(A) = max
v

∫
A
nµv

µ

with v subject to the constraints

|v |≤ 1

4GN
and ∀γ :

(
−
∫
rγ

∇µv
µ(x) ≤ Sbulk(rγ)

)
Number of ”negative charges” is bounded above. Optimal flows:
1) As before the norm bound is saturated on the γ

QES
.

2) The divergence bound is saturated for the bulk homology region
between γ

QES
and A. That is

−
∫
r(γ

QES
)
∇µv

µ(x) = Sbulk(r(γQES
)).

3) Away from γ
QES

there is a lot of freedom for the optimal flow.
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Review: Bit thread prescriptions

Figure: An optimal flow for QSBT prescription. The blue lines are ordinary bit
threads. The red lines are due to having non zero divergence for the flow. The
number of red lines measures the bulk entanglement between the 2 bulk regions.
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Review: Bit thread prescriptions

Double holography interpretation

The red threads are going from r(A) to r(Ac) and count Sbulk in the
higher-dimensional bulk.
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Review: Bit thread prescriptions

Classical Covariant Bit Threads (Headrick Hubeny 2022)

Relax the assumption of time reflection symmetry or static spacetime. So,
we are not confining the flow to a single Cauchy slice.

Figure: An optimal V -flow and U-flow respectively. V -flows are only within the 2
entanglement wedges W(A) and W(B). Similarly, U-flows are only outside of the
2 entanglement wedges. Both of these flows naturally discover the entanglement
wedges.
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Review: Bit thread prescriptions

With area-based formulas, we can’t know if it’s the causal wedge or the
entanglement wedge, and originally, people thought the dual of D(A) was
the causal wedge. But bit threads naturally show the entanglement wedge.
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Review: Bit thread prescriptions

Classical Covariant Bit Threads

The CCBT prescription is

S(A) = sup
V

∫
D(A)

∗V .

where V is a 1-form subject to (d ∗ V = 0) and one of the two equivalent
norm bounds below
1. V = 0 in the bulk chronal future and past of ∂A and for every bulk

timelike curve
∫
dt |V⊥|≤

1

4GN
where t is the proper time along the curve

and V⊥ is the projection of V perpendicular to the curve.
2. There exists a function ϕ in the bulk that equals ±1/2 on Î± ∪ J±(∂A)
, such that the 1-forms dϕ± 4GNV are every where future-directed causal.

Similarly we can define U flows S(A) = inf
U

∫
σ
∗U with norm bound for

every spacelike bulk curve connecting D(A) to D(B),
∫
ds |U⊥| ≥ 1 .
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Review: Bit thread prescriptions

Threads: Integrated flows

Maximize µ(P) over measure µ on P subject to: ∀ q ∈ Q ,

∫
P
dµ(p)∆(q, p) ≤ 1

L[µ,ν] = µ(P) +

∫
Q
dν

(
1−

∫
P
dµ(p)∆(q, p)

)
=

∫
Q
dν+ µ(P)−

∫
Q
dν

(∫
P
dµ(p)∆(q, p)

)
= ν(Q) +

∫
P
dµ(p)−

∫
Q
dν

(∫
P
dµ(p)∆(q, p)

)
= ν(Q) +

∫
P
dµ(p)

(
1−

∫
Q
dν(q)∆(q, p)

)
Minimizeν(Q) ∀p ∈ P, 1−

∫
Q
dν(q)∆(q, p) ≤ 0
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Quantum Covariant Bit Threads

Quantum Covariant Bit Threads
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Quantum Covariant Bit Threads

Quantum Covariant Bit Threads

The only change we need to do is replace the zero divergence condition
with

∀γ :

(
−
∫
D(rγ)

d ∗ V ≤ Sbulk(D(rγ))

)

∀γ :

(∫
I−(γ)

d ∗ U ≥ Sbulk(D(rγ))

)
Classical limit: h̄ → 0 implies we need to drop the Sbulk term.
Static limit: Confined to a single Cauchy surface. We can replace∫
dt |V⊥|≤

1

4GN
with |V |≤ 1

4GN
.
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Quantum Covariant Bit Threads

Optimal solution

1 All the flux passes through γ
QES

, and the flux on the remaining H(A)
is 0. On the γ

QES
, it will be a Dirac delta function. So, it will be of

the form V =
1

4GN
δ(t − tc)n where n is some unit normal direction

that is a function of the points on γ
QES

.

2 The divergence bound is saturated (so the number of places bit
threads randomly appear is fixed from this)

−
∫
D(γ

QES
)
d ∗ V = Sbulk(D(γ

QES
))

3 Bit threads can not appear outside the 2 entanglement wedges due to
the norm bound.
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Quantum Covariant Bit Threads Proof

Thread Dualization

Let us start with the definition of V threads

Maximize

∫
P
dµ

∀q ∈ Q,1−
∫
P
dµ(p)∆(q, p) ≥ 0

∀ τ, σ such that σ ∩ τ ∼ A :

∫
P
dµ(p)N(τ, p) ≤ Sbulk(D(τ ∩ σ))

(3.1)

The corresponding flow obtained will have the following tighter constraint,
but these are equivalent programs that give the same optimal values.
D(rγ) is a light-like limiting case of time-sheets.

∀τ, σ :

∫
Side of τ that has D(A)

d ∗ V + Sbulk(σ ∩ τ) ≥ 0 (3.2)
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Quantum Covariant Bit Threads Proof

U ′ threads

L[µ,ν, ρ] = µ(P) +

∫
Q
dν

(
1− 4GN

∫
P
dµ(p)∆(q, p)

)
+

∫
dρdκ

(
Sbulk(D(τ ∩ σ))−

∫
P
dµ(p)N(τ, p)

)
= ν(Q) + µ(P)− 4GN

∫
Q
dν

(∫
P
dµ(p)∆(q, p)

)
+

∫
dρdκ

(
Sbulk(D(τ ∩ σ))−

∫
P
dµ(p)N(τ, p)

)
= ν(Q) +

∫
dρdκSbulk(D(τ ∩ σ)) +

∫
P
dµ(p)

(
1− 4GN

∫
Q
dν (∆(q, p))−

∫
dρdκN(τ, p)

)
This gives us the below U ′ threads after optimizing over µ(p), which is
essentially like a Lagrange multiplier for inequalities. µ corresponding to V
threads is concave, so we maximize over it, and ν corresponding to U
threads is convex, so we minimize. Similarly, dκ(σ) is convex (minimize)
and dρ(τ) is concave (maximize). dκ(σ) and dρ(τ) have total value as 1,
so they are interpreted as averages over σ and τ .

S(A) = inf
ν(P)

inf
κ(σ)

sup
ρ(τ)

[
ν(Q) +

∫
dρdκSbulk(D(τ ∩ σ))

]
∀p ∈ P, 1− 4GN

∫
Q
dν(Q)∆(q, p)−

∫
dρdκN(τ, p) ≤ 0
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Quantum Covariant Bit Threads Proof

V ′ threads

Similarly, if we start with quantum U threads and find the dual the norm
bound spacelike curves without endpoints become V ′ threads without
endpoints and the U threads become timelike constraint curves with
endpoints.

S(A) = sup
µ(Q)

inf
κ(σ)

sup
ρ(τ)

[
µ(Q) +

∫
dρdκSbulk

]
∀q ∈ Q, 1− 4GN

∫
P
dµ(p)∆(q, p)−

∫
dρdκN(I+(σ), q) ≥ 0

(3.3)

Similarly, we can get the above V ′ threads. So, we have demarcated the
classical area part and the Sbulk part. We now have classical threads
without divergence (endpoints) that have a constraint over all timelike or
spacelike curves. that Classically, V ′ and U ′ threads become the ordinary
V and U threads.
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Quantum Covariant Bit Threads Proof

U ′ flows and V ′ flows

By taking the tangents, we can get the corresponding flows.

S(A) = inf
U′

inf
κ(σ)

sup
ρ(τ)

[∫
I+

∗U ′ +

∫
dρdκSbulk(D(τ ∩ σ))

]
∀p ∈ P, 1− 4GN

∫
ds |U⊥| −

∫
dρdκN(τ, p) ≤ 0

(3.4)

In the U ′ constraint the dκ(σ) can be integrated to 1 and similarly dρ(τ)
in the V ′ constraint.
Constraint interpretation: In U ′ threads/flows, when we take spacelike
curves without endpoints we get usual norm bound as N(τ, p) = 0 for
such curves. The constraint essentially forces the U ′ threads to go only
in the future and past of the optimal surface of intersection of Cauchy
slices and timesheets.
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Quantum Covariant Bit Threads Proof

Figure: Think green spacelike curves saturate the constraint, but the light green
spacelike curves don’t.
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Quantum Covariant Bit Threads Proof

Flow Dualization

We start with the relaxed QES. For ϕ, the level sets are Cauchy slices σt
and for ψ the level sets are time sheets τs .

f [ϕ, ψ] :=

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds

[
Area(σt ∩ τs)

4GN
+ Sbulk(σt ∩ τs)

]

f [ϕ, ψ] =
1

4GN

∫
M

√
g |dϕ∧̇dψ|+

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

A generalization of the coarea formula was used for area. We know dualize
from ψ to V , with fixed ϕ.

minimize
1

4GN

∫
M

√
g | dϕ∧̇dψ | +

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

over ψ such that ψ|D(A) = −1

2
, ψ|D(B) =

1

2
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Quantum Covariant Bit Threads Proof

Rewrite it by introducing a 1-form X

minimize
1

4GN

∫
M

√
g |dϕ∧̇X |+

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

over ψ,X such that dψ = X , ψ|D(A) = −1

2
, ψ|D(B) =

1

2
.

Impose the constraint dψ = X using a Lagrange multiplier 1-form V .

L[ψ,X ,V ] =
1

4GN

∫
M

√
g [|dϕ∧̇X |−4GNV · (X − dψ)] +

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

L[ψ,X ,V ] =

∫
M

√
g [

1

4GN
|dϕ∧̇X |−V · X ]−

∫
M
ψd ∗ V +

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

−
∫
I
ψ(∗V ) +

1

2

(∫
D(A)

∗V −
∫
D(B)

∗V

)
For the first term to be bounded we need dϕ± 4GNV ∈ j+. ∗V |I= 0 also
follows from boundedness.
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Quantum Covariant Bit Threads Proof

⇒
L[ψ,X ,V ] = −

∫
M
ψd ∗ V +

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

+
1

2

(∫
D(A)

∗V −
∫
D(B)

∗V

)

Define a simple function that is 1 on the side of τs that contains D(A).

χτs =

{
0 ψ(x) > s

1 ψ(x) < s

∫ 1
2

− 1
2

χτsds =

∫ 1
2

ψ(x)
χτsds =

∫ 1
2

ψ(x)
1ds =

1

2
− ψ(x)

Replace ψ(x) in the above Lagrangian with this.
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Quantum Covariant Bit Threads Proof

L[ψ,X ,V ] = −1

2

∫
M

d ∗ V +

∫ 1
2

− 1
2

ds

∫
M
χτsd ∗ V +

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

+
1

2

(∫
D(A)

∗V −
∫
D(B)

∗V

)
Using

∫
M d ∗ V = −

∫
D(A) ∗V −

∫
D(B) ∗V it simplifies to

L[ψ,X ,V ] =

∫
D(A)

∗V +

∫ 1
2

− 1
2

ds

∫
M
χτsd ∗ V +

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds [Sbulk(σt ∩ τs)]

Now the above equation has 2 bulk terms. In the classical case the Sbulk
wont be there. We want to combine both of those terms and get the
divergence constraint that we guessed as an explicit constraint.

⇒= max
ϕ

max
V

[∫
D(A)

∗V +min
ψ

∫ 1/2

−1/2
dt

∫ 1/2

−1/2
ds

[∫
D(A) side of τs

d ∗ V + Sbulk(σt ∩ τs)

]]
The optimal solution for the above program will be (ψ0, ϕ0,V 0). ψ0 will
be a delta that gives the same timesheet τ0 for all s. Similarly ϕ0. Let γ0

be their intersection.
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Quantum Covariant Bit Threads Proof

We want to show that all the optimal solutions for the above program are
such that the optimal time sheet will be trivial which means inside it, it
has the entanglement wedge and between the entanglement wedge and
the optimal time sheet there is no flow.
Doing this is actually simple and follows from the norm bound. Even in
the classical case we get the below 3 conditions.∫

τ
∗V ≤

∫ 1/2

−1/2
dt area(γt)

4GN

∫
q
∗V ≤ ϕ(y)− ϕ(x)

where q is any timelike curve passing though γ.

V |I±(γ0)= 0

The above equation tells that once the norm bound is saturated on the
optimal γ0 then I±(γ0) cannot have any non zero flow. So any optimal
timesheet is trivial and can be pushed towards the entanglement wedge.
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Quantum Covariant Bit Threads Proof

Entanglement distribution functions

An EDF is a function f on M such that, for all A in the CFT,∣∣∣∣∣
∫
D(A)

f

∣∣∣∣∣ ≤ S(A) . (3.5)

In the case of holography, the boundary entanglement distribution
functions are dual to the bulk flows with f = g(V , n) = V · n. Optimal
flows give those boundary entanglement distribution functions that
saturate for D(A).
In the case of finite degrees of freedom, the function f will be summed
over the subsystems.
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Quantum Covariant Bit Threads Proof

Entropohedron

If the discrete degrees of freedom are A1,A2, · · · then (f (A1), f (A2), . . . ) is
a vector that can be plotted. This Entropohedron encodes all the
entanglement structures of the subsystems, just like the set of all f s.
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Figure: Entropohedra for various states on two qubits: (a) maximally mixed,
ρ = 1

4 (|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|). (b) Maximally classically correlated,
ρ = 1

2 (|00⟩ ⟨00|+ |11⟩ ⟨11|). (c) Maximally entangled (Bell pair),
ρ = 1

2 (|00⟩+ |11⟩)(⟨00|+ ⟨11|).
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Quantum Covariant Bit Threads Proof

Entropohedron

Figure: Entropohedra for various states on 3 qubits: (a) maximally mixed. (b)
Maximally classically correlated. (c) Maximally entangled (e.g. GHZ or W state).
(d) Marginal of four-party perfect tensor.
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Numerical

If we recall QES has a minimax and maximin formula in terms of Sgen and
not a pure minimization or maximization. If we want to do numerical
calculations, convex/concave functions are much easier to deal with.
For V and U flows every time we guess a non optimal flows it gives an
upper or lower bound. If we have more number of non optimal flows the
bounds become stronger.
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Deriving Einstein’s equations

Agón Cáceres Pedraza 2020 derived (classical) Einstein’s equations from
bit threads following previous work where they derived from RT formula by
Raamsdonk, Faulkner, Hartman etc. Their proof was a generalization of
Ted Jacobson’s old proof. In the RT formula version, the first law of
entanglement entropy is mapped to Einstein’s equations.
Earlier, we considered the metric as fixed, and then for all flows (even
non-optimal), we demanded they satisfy the norm bound. We can do the
reverse, for every optimal solution, the metric should satisfy the norm
bound which implies the bulk gravity is classical GR. This was done for
classical GR. If we do for QCBT, then we will maybe (we didn’t try)
derive semi-classical Einstein’s equation with ⟨T̂µν⟩.
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Islands

Images from the review: Almheiri Hartman Maldacena Shaghoulian Tajdini
2020.
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Interior DoF are not independent

S(R) = ext
I
Sgen(R ∪ I ) = ext

I

[
A(∂I )

4G
+ Sbulk(R ∪ I )

]
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