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1 Introduction

The supreme task of the physicist is to arrive at those universal elementary laws

from which the cosmos can be built up by pure deduction. There is no

logical path to these laws; only intuition, resting on sympathetic understanding of

experience, can reach them. In this methodological uncertainty, one might suppose

that there were any number of possible systems of theoretical physics all equally

well justified; and this opinion is no doubt correct, theoretically. But the

development of physics has shown that at any given moment, out of all conceivable

constructions, a single one has always proved itself decidedly superior to all the rest.

Albert Einstein (1918)

Fundamental physics is that part of physics that cannot be reduced to some other

physics. If you keep asking ”Why?” for physical phenomena, you always end up at funda-

mental physics, and your curiosity must end there as you can’t find an answer to ”Why?”

anymore. Fundamental physics is the Big Bad of physics. By definition, the fundamental

laws cannot be explained from some other physical explanation. The only type of expla-

nation I can think of is an ontological argument, you can argue that the fundamental laws

of physics (possibly a theory of everything) is the greatest possible Platonic mathematical

entity, and due to this property it not existing physically is logically impossible and there-

fore it must exist a priori without any physical reason for its existence. Any reasonable

scientist must believe in the reductionist philosophy that every physical phenomenon can

be reduced to fundamental physics (including those we haven’t understood, such as con-

sciousness). In philosophical words, all physical phenomena supervene on the fundamental

laws of physics (possibly a theory of everything). In [1], Anderson correctly points out

that not everyone who agrees with reductionism must agree that fundamental physics is the

most important research direction and explains that you can do highly creative research

on emergent phenomena without working in fundamental physics. Anderson also mentions

that many great fundamental physicists have used condescending language (”the discoverer

of the positron said ”the rest is chemistry”” here Anderson is talking about the predictor

P. A. M. Dirac, not the discoverer Carl Anderson) to describe applied physics. I want to

clarify that even though I am only interested in fundamental physics, I respect all fields

and all researchers. My preference for fundamental physics is like my preference for our

Indian cuisine compared to other cuisines or my preference for animanga (collective term

for anime and manga) over other forms of entertainment, just a personal preference, and I

don’t claim things I like to be objectively more interesting.

What is considered fundamental physics depends on the time. For example, in New-

ton’s time, his theories Classical Mechanics (CM) and Newtonian Gravity (NG) were con-

sidered fundamental. But today, we know that those 2 are some limits of quantum field

theory (QFT → QM → CM) and general relativity (GR → NG). In the future, we might

find that QFT and GR are limiting cases of a theory of everything (the most promising

candidate being string theory), then that theory will replace these two as the fundamental

theory. Lagrange, who rewrote Newton’s theories into his new Lagrangian formulation,
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famously said,

Newton was the greatest genius that ever existed, and the most fortunate,

for we cannot find more than once a system of the world to establish.

Joseph-Louis Lagrange

But Lagrange wrongly thought that fundamental physics was over with CM and NG.

Fortunately for us, it’s not over yet, and the last piece of fundamental physics is likely

quantum gravity.

In practice, we must study the limiting cases before studying QFT and GR. [9–19] are

books that are similar to these notes. [9–18] follows the same approach as me, starting with

old fundamental theories and ending with QFT . [19] follows the reverse approach starting

with QFT → QM → CM . I am not saying these are the best books to study QFT , which

is definitely not true. I am merely pointing out that these books are organized similarly to

these notes. Also, check [20, 21] for short notes related to fundamental physics and [7, 8]

for relevant mathematics notes.

2 Mathematics

The book of nature is written in the language of mathematics.

Galileo Galilei

[2–8]. Main reference is [2].

2.1 Mathematical preliminaries

2.2 Real analysis

2.3 Complex analysis

Wirtinger derivatives: In what sense are z and z̄ independent? In the below, even

though z, z̄ look independent just like a, b notice that a, b must be real.{
z = a+ bi

z∗ = a− bi
⇐⇒

{
a = 1

2z +
1
2z

∗

b = 1
2iz −

1
2iz

∗
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2.3.1 Cauchy’s integral formula

2.3.2 Hypercomplex numbers

2.4 Group theory

2.4.1 Representation theory

2.4.2 The rotation group

2.4.3 Lorentz group and its representations

2.5 Homology groups

2.6 Homotopy groups

2.7 Manifolds

2.8 de Rham cohomology groups

2.9 Riemannian geometry

2.10 Complex manifolds

2.11 Fibre bundles

2.12 Connections on fibre bundles

2.13 Algebraic geometry

2.14 Random matrix theory
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Part I

Classical physics

If nature were not beautiful it would not be worth knowing, and

life would not be worth living.

Henri Poincaré

3 Classical mechanics

In classical mechanics, we study point particles. There is only one type of Newtonian

particle in classical mechanics, unlike in quantum mechanics. These particles follow the

Maxwell–Boltzmann statistics. These particles interact with classical fields like Newtonian

gravity, electromagnetism, etc.

3.1 Newtonian formulation

Are Newton’s laws of motion just definitions or empirical facts [22]? Recall that Newton’s

laws say that in inertial frames

1. A body remains at rest, or in motion at a constant speed in a straight line, except

insofar as it is acted upon by a force.

2. The net force on a body is equal to the body’s instantaneous acceleration multiplied

by its instantaneous mass or, equivalently, the rate at which the body’s momentum

changes with time.

3. If two bodies exert forces on each other, these forces have the same magnitude but

opposite directions.

The above traditional versions are bad. Because the 2nd law can be considered either as

the definition of F(x(t)) = m
d2x(t)

dt2
or the definition of inertial frames. The 1st law is just

a corollary of the 2nd when the net force is 0. The 3rd one is an empirical fact, which is

true if the forces are instantaneous. In classical field theories like electromagnetism, due

to the force field not propagating instantaneously, it is not true. The below are better

versions;

1. Inertial reference frames exist.

2. Forces (quantification of how much interaction there is) between particles behave like

mathematical vectors, and the acceleration of the particle is proportional to the net

vector addition of all forces, and mass is defined as the inverse of the proportionality

constant.

3. Same as before.
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This 1st law is saying that there exists an inertial frame. Once you believe in that, you can

do experiments in any random reference frame, and as long as you carefully add fictitious

forces like Coriolis force, centrifugal force, etc then Newton’s laws will work. This 2nd

law is an empirical fact that force behaves like a vector and not like some other thing like

scalar or pseudo-vector or spinor, etc. It is also an empirical fact that it is proportional to

acceleration and not
dnx(t)

dtn
for some n > 2. This is why you only need the positions and

velocities of all Newtonian particles for complete knowledge to predict everything.

3.2 Lagrangian formulation

3.3 Hamiltonian formulation

3.4 Hamilton–Jacobi formulation

3.5 Statistical thermodynamics

3.6 Nonlinear dynamics and chaos

3.7 Special relativity

Random history: Einstein’s contribution to special relativity is not as significant or re-

markable as his contribution to general relativity. In his work on special relativity, he

showed that he was a man with enough courage to question fundamental aspects of reality,

such as simultaneity and the concept of time, but special relativity is not conceptually deep

like general relativity. The mathematics he used for special relativity is very elementary.

Lorentz transformations were already known. But people incorrectly interpreted them,

using the aether medium before Einstein clarified the meaning of those equations. Initially,

Einstein thought that the geometric interpretation introduced by his teacher Minkowski was

unnecessarily complicated mathematics introduced into this theory. Only later, he realized

the importance of mathematics (especially geometry) when formulating his general rela-

tivity. The fact that Einstein was a remarkable genius is only clear from his contributions

to general relativity. Unlike in special relativity, where Lorentz, Poincare, Larmor,

FitzGerald and many others contributed, Einstein almost single-handedly formulated

general relativity (with David Hilbert being the 2nd most important contributor who came

up with the correct Einstein’s field equations 5 days before Einstein independently but

Einstein’s paper was published first. But Hilbert rightfully acknowledged Einstein as the

main contributor to GR because Einstein previously found the equations with the trace

term missing and was aware that he needed to add some term.)

Postulate: Space and time are unified to give the flat Minkowski spacetime, and we can

gauge fix the diffeomorphism invariance of special relativity so that the metric will just

become (−1,+1,+1,+1)1.

This postulate is better than the original 2 postulates by Einstein as it is easier to

generalize to general relativity.

1The other signature is considered blasphemy against the laws of physics.
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4 Classical field theory

[23–30]

In classical physics, the matter is generally point particles and not fields, but the forces

between them are generally classical fields like Newtonian gravity is a non-relativistic scalar

field, electromagnetism is a relativistic vector or gauge or spin 1 field, and Einstein’s GR

is a spin 2 field. We can also study fermion fields as classical fields with Grassmannian

values, but they are not very useful in classical physics because we don’t have Fermi–Dirac

statistics in classical physics.

4.1 0 : Scalar fields

4.1.1 Newton–Cartan reformulation of Newtonian gravity

Newtonian gravity is the first classical field theory to be discovered, and it is a scalar field

theory.

4.1.2 Relativistic scalar field

4.2 1/2 : Classical spinor or Grassmann fields

4.3 1 : Electromagnetism

4.3.1 Basics

4.3.2 As a U(1) gauge field

4.3.3 In differential forms language

4.3.4 The energy-momentum tensor

4.3.5 Electromagnetic waves

4.3.6 Galilean electromagnetism (c → ∞)

[32]

4.4 1 : Yang-Mills theory

4.5 Spontaneous symmetry breaking

5 General relativity

[33–36]

In principle, this is also a classical field theory, and this section should be a subsection

of the previous section. But in some sense, even classical gravity is secretly already

a quantum theory since even in the classical limit, gravity is dual to some holographic

quantum field theory. Apart from that, I really like general relativity (even more than

the standard model of particle physics since it has no dimensionless parameters and can

be completely guessed by anyone who knows Newtonian gravity and Maxwell’s equations

without experimental help), so it deserved its own section.
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5.1 Formulation

5.1.1 No prior geometry and general covariance

Mathematics was not sufficiently refined in 1917 to cleave apart the demands for ”no

prior geometry” and for a geometric, coordinate-independent formulation of physics.

Einstein described both demands by a single phrase, ”general covariance”. The ”no prior

geometry” demand actually fathered general relativity, but by doing so anonymously,

disguised as ”general covariance”, it also fathered half a century of confusion.

MTW Gravitation (1973 book)

General covariance or diffeomorphism invariance or reparameterization invari-

ance: The laws of physics will be invariant under arbitrary differentiable coordinate trans-

formations.

This should have been understood long before general relativity, but this was un-

derstood by Einstein while he was developing general relativity and has caused a lot of

confusion. Recall Newton’s second law

F(x(t)) = m
d2x(t)

dt2

The above equation is valid for any coordinate system. We generally use Cartesian

coordinates because they are the simplest. But if you use spherical coordinates, then the

components of the above equation will be

Fr = m(r̈ − rθ̇2 − rϕ̇2 sin2 θ)

Fθ = m(2ṙθ̇ + rθ̈ − rϕ̇2 sin θ cos θ)

Fϕ = m(2ṙϕ̇ sin θ + rϕ̈ sin θ + 2rθ̇ϕ̇ cos θ)

Even though the equations look very different, the physics hasn’t changed. The reason

things became more complicated is because the metric went from diag(1, 1, 1) to something

slightly more complicated. Similarly, we can go to an arbitrary coordinate system with

arbitrary metric gab
2 that is more complicated than spherical coordinates, and Newton’s

second law is still valid. We can use a lot of machinery of Riemannian geometry

in Newtonian physics as shown in 4.1.1. But in general, it is not needed because, in

this case, the background space is not dynamic, and geometry is a priory fixed. We have

a flat 3D Euclidean space, i.e., scalar curvature is 0 everywhere. So we can always choose

(i.e., gauge fixing) the Cartesian coordinates in this case where the metric is simplified

to diag(1, 1, 1). If our space (non-dynamic) instead has some arbitrary curvature, then

we can’t find nice coordinate systems like Cartesian coordinates, and we should work with

nontrivial metrics and use the machinery of Riemannian geometry. Example: Think about

particles confined to a spherical surface interacting with Newtonian gravity. Fr component

will be canceled due to normal confinement forces and r = const. This submanifold of 3D

Euclidean space is a 2D non-dynamic curved space.

2Latin indices are reserved for Euclidean signature. Greek indices are reserved for Minkowski signature.
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This logic can be carried over to quantum mechanics, special relativity, quantum field

theory etc. All of them must have diffeomorphism invariance. In Quantum Mechanics, you

probably saw ∇⃗ in cartesian, spherical, and cylindrical coordinates. But we can also define

an arbitrary coordinate system on 3D Euclidean space with some arbitrary metric that will

still have 0 scalar curvature everywhere. In special relativity and quantum field theory,

we have different coordinates that are not Cartesian, such as the Rindler coordinates3. In

principle, we can take an arbitrary coordinate system where the metric is very different

from diag(−1, 1, 1, 1). Note that QFT in curved spacetime ̸= Generally covariant

QFT, because in the former, we have an arbitrary non-dynamical spacetime, but in the

latter, we have the specific Minkowski spacetime, even though in both cases the coordinate

system is arbitrary.

Active and passive transformation: Mathematically they are same. The mathemati-

cal equation for your rotation by an angle is the same as if everything else in the universe

revolves around you by the same angle. Whether they are physically the same is an ongo-

ing philosophical debate. Mach’s principle states that the existence of absolute rotation

(the distinction of local inertial frames vs. rotating reference frames) is determined by the

large-scale distribution of matter in the universe. Though it motivated Einstein to come

up with general relativity, it is not exactly known which form of Mach’s principle is valid,

and theories like Brans–Dicke theory obey a stronger form of Mach’s principle than GR.

Diffeomorphism invariance is a gauge symmetry: Recall that only the global part

of a gauge symmetry is physical and gives rise to conserved quantities. Diffeomorphism

invariance is present in any theory. For example, if you consider special relativity and gauge

fix the metric so that it becomes diag(−1, 1, 1, 1), then there is still a global symmetry left

corresponding to the Poincaré group. Spacetime translations give 4 momentum conserva-

tion. Spacetime rotations give angular momentum conservation (due to spatial rotations)

and ”conservation of the center of mass” also called the conservation of N = tp − Er

(due to Lorentz boosts). General relativity has no new symmetry compared to special

relativity, so we don’t get any new conserved quantities. Note that if laws have some

symmetry, that doesn’t mean all solutions to those laws have that symmetry. A notable

example is the FLRW metric, which doesn’t have time translation symmetry due to the

initial singularity, and therefore, there is no notion of energy conservation. Time-

translation symmetry is guaranteed only in spacetimes where the metric is static: that is,

where there is a coordinate system in which the metric coefficients contain no time variable.

No prior geometry: This is the main specialty of general relativity compared to previous

theories. Because the background is not a priori fixed to Euclidean or Minkowski space

and because the background is dynamic, it becomes absolutely necessary to use the

machinery of Riemannian geometry. Earlier, it was optional.

3Recall Unruh effect.
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5.1.2 Equivalence principle

5.1.3 Einstein field equations

5.1.4 Einstein–Hilbert action

5.1.5 ADM formalism

5.2 Black holes

5.2.1 Schwarzschild metric

5.2.2 Reissner-Nordström metric

5.2.3 Kerr-Newman metric

[37]

5.2.3.1 Penrose process

5.2.4 The Four Laws

5.2.5 Regular black holes

[38]

5.3 Causal structure

[39]

5.3.1 Singularity theorems

5.3.2 FTL

[40]

5.4 Perturbation theory

5.4.1 GR→NG

The limit to get special relativity is very obvious. The metric just becomes non-dynamical

and becomes the Minkowski metric. The limit to get Newtonian Gravity is nontrivial. The

following passage from 2.1.4 of [41] explains how even the leading order theory already

differs from Newtonian gravity.

”Therefore, general relativity produces the same trajectories at leading order as New-

ton’s theory. This is called the Newtonian approximation of general relativity.

However, let us stress that even at this level of approximation, the two theories differ

drastically—in a way that can be tested at the experimental level already. Indeed, in general

relativity, the variation of an observer proper time dτ (Eq. 27) with respect to the proper

time of another observer depends explicitly on their different positions in a gravitational

potential U . This means that two observers at different locations in the gravitational

potential will not agree on the evolution of time. This effect, although minute, can be

tested if one has accurate enough clocks. In other words, had we developed atomic clocks
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with sufficient precision prior to our ability to observe the motions of celestial bodies in the

solar system, we could have confirmed the superiority of general relativity over Newton’s

theory.”

5.4.2 Post-Newtonian expansion

5.4.3 Minkowskian and post-Minkowskian approximation

5.4.4 Gravitational waves

5.5 The Cauchy problem

5.6 Cosmology

[42, 43]

5.6.1 de Sitter space

[44]

5.6.1.1 dS-Schwarzschild metric

5.6.2 Anti-de Sitter space

5.6.2.1 AdS-Schwarzschild metric

5.6.3 FLRW metric

5.6.4 The inhomogeneous universe

[42]

5.6.4.1 Newtonian perturbation theory

5.6.4.2 Relativistic perturbation theory

5.6.4.3 Cosmic microwave background

5.6.5 The standard model of cosmology (ΛCDM)

Note: There is a difference between how GR is related to ΛCDM compared to how QFT

is related to the standard model of particle physics. GR is already a single theory. But

QFT is a framework that can describe ∞ theories. Horndeski’s theory [47] is more

analogous to QFT than GR. Horndeski’s theory is more like a framework for classical

gravity theories, and GR is just one of them. But there is a uniqueness to GR. GR

is the simplest classical gravity theory and is preferred by the Occam’s razor. In

QFT, we don’t have this kind of uniqueness. Maybe you can argue that the gauge group

U(1) × SU(2) × SU(3) is somehow unique, but even then, the dimensionless parameters

coming from masses, etc, are arbitrary experimental values. ΛCDM itself is not a theory

but just a single solution to GR that describes the real universe and is dependent on the
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initial conditions at the initial singularity. ΛCDM is a course-grained approximation of the

universe. It explains the large-scale structure of the universe, but it is not an exact model

that contains the metric at each point in the universe. Other solutions to GR might also

exist in the multiverse. It is possible that ΛCDM is a uniquely preferred solution when

we consider quantum gravity (maybe just like electron g−2, we can precisely calculate the

parameters of ΛCDM), but in GR, it is not the case.

5.6.6 Inflation

5.6.7 Modified gravity

[45–47]

5.6.7.1 Horndeski’s theory

[47]

5.6.8 Ultimate fate of the universe scenarios
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Part II

Quantum physics

6 Quantum mechanics

[48]

6.1 Formulation

6.1.1 Canonical formulation

6.1.2 Path integral formulation

6.2 Rotations and angular momentum

6.3 Perturbation theory

6.4 QM→CM

References: Chapter 14 of [48].

6.5 Axiomatic QM

[49]

6.5.1 Dirac–von Neumann axioms and C*-algebras

6.5.2 Spectral theory

6.5.2.1 Rigged Hilbert spaces

6.6 Quantum information theory

[50]

6.7 Statistical thermodynamics

6.8 Relativistic quantum mechanics (RQM)

[51–54]

6.8.1 0 : Klein–Gordon equation

6.8.2 1/2 : Dirac, Weyl and Majorana equations

[55]

– 13 –



6.8.3 1 : Maxwell equation and Proca equation

6.8.4 3/2 : Rarita–Schwinger equation

6.8.5 j : Bargmann–Wigner equation and Joos–Weinberg equation

7 Quantum field theory

7.1 0 : Scalar fields

7.2 1/2 : Fermion fields

7.3 1 : Gauge fields

7.3.1 QED

7.3.2 Yang–Mills theory

7.4 Scattering amplitudes

[56, 57]

7.5 Renormalization

7.5.1 QED

7.5.2 Yang–Mills theory

7.6 Spontaneous symmetry breaking

7.6.1 Abelian Higgs mechanism

7.7 Anomalies

7.8 Solitons

[58]

7.9 Nonrelativistic QFT (NQFT)

[59]

7.10 QFT→NQFT or RQM or QM

References: Chapter 8 of [9], [60] and Chapter 6 of [19].

7.11 The standard model of particle physics

[61–63]

We should now touch some grass and make contact with reality. Using QFT (it’s a frame-

work, not a theory), you can make infinite theories, and the standard model is 1 of them

that we can fix based on experiments. It needs 25 fundamental dimensionless constants

determined by experiments. See the Note in 5.6.5.

7.11.1 Electroweak theory

7.11.2 QCD

[64]
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7.11.2.1 Confinement

7.12 BSM (Beyond the Standard Model)

[65]

7.12.1 Neutrino oscillations

7.12.2 Dark matter candidates

7.12.3 Baryon asymmetry

[66]

7.12.4 Grand unified theories

7.13 Lattice gauge theory

[67]

7.14 Effective field theory

[68–71]

7.15 QFT in lower dimensions

[72, 73]

7.15.1 0+0

7.15.2 0+1
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A Failed theories

1. Aristotelian physics (384–322 BC)

2. Brahmagupta’s gurutvākars.an. am qualitative theory of gravity (628)

3. Descartes’ vortices theory of gravity (1644)

4. Aether theories before special relativity (1704-1905)

5. Einstein’s scalar field theory for gravity (1912)

6. Old semiclassical quantum theory (1900–1925)

7. Relativistic quantum mechanics (1927)

8. Steady-state model (1930s and 40s)

9. Einstein’s classical unified theory (1930-1955)

10. Technicolor (1980s)

11. String theory (as an alternative to QCD it failed, as quantum gravity, it still is the

most promising candidate)
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