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Mathematical Preliminaries

since  for the Cartesian metric . For a fixed  the direction of gradient
will give the maximum increase.

Curvilinear coordinates

Note: In slides prof only uses contravariant components (i.e only , ,  and  are used) but  is written as
.
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Orthogonal coordinate system

dot product is easier in orthogonal

cross product

Elements

Gradient

Divergence
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i
i i

i
ij

i j ij
i j

g ​ =ij 0 if i = j

h ​ ⋅ h ​ = 0 if i = ji j 

h = ​ ⇒i

h ​i
2
h ​i

h =i
​

h ​i

1

h ​(r)    ​k =def
g ​(r)kk

​ = = ​ = h ​hêi êi
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j êj

x× y = x y − x y ​e ​ + x y − x y ​e ​ + x y − x y ​e ​( 2 3 3 2)
h ​1

h ​h ​2 3
1 ( 3 1 1 3)

h ​2

h ​h ​1 3
2 ( 1 2 2 1)

h ​3

h ​h ​1 2
3

dℓ = h ​dq ​ = ​dqi
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Curl

Laplacian

Generating

A simple method for generating orthogonal coordinates systems in two dimensions is by a conformal mapping of
a standard two-dimensional grid of Cartesian coordinates . A complex number  can be formed
from the real coordinates x and y, where i represents the imaginary unit. Any holomorphic function 
with non-zero complex derivative will produce a conformal mapping; if the resulting complex number is written 

, then the curves of constant  and  intersect at right angles, just as the original lines of constant 
and  did.

Orthogonal coordinates in three and higher dimensions can be generated from an orthogonal two-dimensional
coordinate system, either by projecting it into a new dimension (cylindrical coordinates) or by rotating the two-
dimensional system about one of its symmetry axes. However, there are other orthogonal coordinate systems in
three dimensions that cannot be obtained by projecting or rotating a two-dimensional system, such as the
ellipsoidal coordinates. More general orthogonal coordinates may be obtained by starting with some necessary
coordinate surfaces and considering their orthogonal trajectories.

Examples:

Table of orthogonal coordinates
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Del in cylindrical and spherical coordinates

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates




Note: In  polar formulas are similar to  cylindrical not  polar.

Divergence theorem

2D 3D 3D



Suppose  is a subset of  which is compact and has a piecewise smooth boundary  or . If  is a
continuously differentiable vector field defined on a neighbourhood of , then

Stokes' theorem

the RHS is invariant under the change of surface as long as the boundary is same

Dirac delta

Wrongly if you apply divergence theorem for the below equation you get that the divergence is .

Introduction

Name Integral equations Differential equations

Gauss's
law

Gauss's
law for
magnetism

Faraday's
law of
induction

V Rn S ∂V F

V
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E ⋅ dS = ​ ​ρdV
ε ​0

1 ∭
Ω

∇ ⋅E = ​

ε ​0

ρ

B ⋅ dS = 0 ∇ ⋅B = 0
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∇ ×E = − ​
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https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Gauss%27s_law
https://en.wikipedia.org/wiki/Gauss%27s_law_for_magnetism
https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction


Name Integral equations Differential equations

Ampère's
circuital
law

Note: In  electromagnetism is very different from . In   and there are 3
independent components. 2 of them will be time-space and make a  electric field vector. The remaining
component is space-space and is pseudo-scalar magnetic field. Remember that cross product will give pseudo-
vector only in . In  dimensions to get a unique vector perpendicular to the given vectors we need 
vectors.

In this course when the say  electromagnetism that means neglect the  direction but still in .

Laplace’s Equation

for a general charge distribution  can be calculated more easily that 

even when the charge distribution is not known it is easier to work with potentials by confining our attention
to places where there is no charge.

electrostatics is the study of Laplace’s equation

the more general version  is called Poisson's equation.

we cannot write down a “general closed form solution” for Laplace’s Equation in more than 

The mean value theorem

immediately it follows that the average value in the entire spherical volume is also same since each layer of
spherical surface has same value.

Proof: Using divergence theorem we can show that the surface integral will be independent of 

 for volume because  is used for potential.

Earnshaw's theorem states that a collection of point charges cannot be maintained in a stable stationary
equilibrium configuration solely by the electrostatic interaction of the charges.

saddle points are possible

maxima and minima are not possible

First uniqueness theorem: The solution to Laplace’s equation in some volume  is uniquely determined if  is
specified on the boundary surface .

∮
∂Σ
B ⋅ dℓ = μ ​ ​J ⋅ dS+ ε ​ ​ ​E ⋅ dS0 (∬

Σ
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d
∬

Σ
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)

2D 3D 2D F ​ = ∂ ​A ​ − ∂ ​A ​μν μ ν ν μ
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3D n n − 1
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V E.

∇ φ = −2

ε

ρ
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4πR2

1 ∮
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R

​ ​

​ ⋅ ( V )dτ∫
vol 

∇ ∇

0

= ​ V ⋅ d∫
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∇ S

= R ​ ​V (r, θ,ϕ) sin θdθdϕ ​ ​

2 (
∂r
∂

∫
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)
∣

∣

R

τ V

V V

S

https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Amp%C3%A8re%27s_circuital_law


Dirichlet boundary conditions specify the value of the potential at each surface point.

Second uniqueness theorem: In a volume  surrounded by conductors and containing a specified charge
density , the electric field is uniquely determined if the total charge on each conductor is given. The region as a
whole can be bounded by another conductor, or else unbounded.

Neumann boundary conditions specify the value of the normal component of the gradient of the potential
at each surface point.

Mixed boundary conditions: At some points  and at other points  is given. Here also unique.

giving both  and  makes it over determined.

Poisson 2D formula

For  if we give the values of  on a circle then the entire potential function will be fixed.

Try 

For   and for  . The general solution will be

Of course for inside the circle neglect the  and  terms and for outside the circle neglect the 
 and  terms. For  we get

Polar coordinates

In  the most general solution in polar coordinates is

Cylindrical coordinates

Conformal mapping

applies only to two-dimensional potentials. These are systems in which  depends only on  and , for
example, all conducting boundaries being cylinders with elements running parallel to .

Significance of the cylindrical co-ordinate

Off-axis expansion (electrostatic lensing)

Bessel functions

V

ρ

V ⋅n̂ ∇V

V ⋅n̂ ∇V

2D V

∇ V =2
​ ​ r ​ +
r

1
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∂
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dr2
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dR
m R =2 0

m = 0 R = Ar±m m = 0 R = A ​ +0 B ​ ln r0

V (r, θ) = A ​ + B ​ ln r +( 0 0 ) ​ A ​r + ​ e

m=−∞,=0

∑
∞

( m
∣m∣

r∣m∣

B ​m ) imθ

​

r∣m∣
B ​m B ​ ln r0

A ​rm
∣m∣ B ​ ln r0 r < 1

V (r, θ) = ​ ​dαf(α) ​

2π
1

∫
0

2π

(
1 − 2r cos(θ − α) + r2

1 − r2

)

2D

φ(ρ,ϕ) = A ​ + B ​ ln ρ C ​ + D ​ϕ +( 0 0 ) ( 0 0 ) ​ A ​ρ + B ​ρ C ​ sinαϕ + D ​ cosαϕ .
α=1

∑
∞

[ α
α

α
−α] [ α α ]

V x y

z



Green's function

we generally take .

Green's function is not unique.

1D and 2D

check the dimensions. For  dimensions cannot be correct unless we add the constant . Here we
can't uniquely decide the constant because for  case at  the  can never be .

 is antisymmetric. In  it only has . In  it has .  being a pseudo scalar. In 

 it has  with  being a pseudo vector. In  Lorentz force (

) becomes  where  is an imaginary direction.

Conservation laws

The Poynting vector S has dimensions of (energy/volume) × velocity. This invites us to interpret S as an energy
current density by analogy with the usual charge current density.

Energy

The flux of electromagnetic energy density is

L G(r, r ) = −δ(r− r )′ ′

L = ∇2

G1D

G2D

G3D

= − ​∣r− r ∣ = − ​∣x − x ∣
2
1 ′

2
1 ′
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2π
1 ′

= ​ ​

4π
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(
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1
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⎣
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Momentum

The electromagnetic momentum density is

Angular momentum

Abraham–Minkowski controversy (in medium)

Moving charges and radiation

Retarded potential

If we take the Lorenz gauge condition:  then

Jefimenko's equations

Using  we get

Point charge

Liénard–Wiechert potential

For a charge with trajectory given by 

U ​ = d r ​E + ​Bem ∫ 3 (
2
ϵ ​0 2

2μ ​0

1 2 )

p ​ = ​ =em
c2

S
ϵ ​E×0 B

P ​ = ϵ ​ d rE×Bem 0 ∫ 3
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c

1 )

∇ ⋅A+ ​ ​ = 0
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r 3 ′
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4π
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E = −∇φ − ​ , B = ∇ ×A
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1
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1
∂t
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r ] ′
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4π
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′
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c

1
∂t
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′
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https://en.wikipedia.org/wiki/Abraham%E2%80%93Minkowski_controversy
https://en.wikipedia.org/wiki/Retarded_potential
https://en.wikipedia.org/wiki/Jefimenko%27s_equations
https://en.wikipedia.org/wiki/Li%C3%A9nard%E2%80%93Wiechert_potential


we get

The symbol  means that the quantities inside the parenthesis should be evaluated at the retarded time 

.

here ,  and .

Larmor formula

Radiation reaction (Abraham–Lorentz force)

the electromagnetic force which a radiating system exerts on itself

Appendix

Maxwell's equations

J(r , t ) = qv ​(t )δ (r − r ​(t ))′ ′
s

′ 3 ′
s

′

φ(r, t) = ​ ​ ​

4πϵ ​0

1
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3
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⎝

⎛
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s
2
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⎞
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​ ​

4πc3
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(1 − β cos θ)5

sin θ2
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3
2
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q2

(
c
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2

3
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4πε ​c0
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6πε ​c0
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Magnetic dipole

Electric dipole

m = I A n̂

A(r) = ​ ​ = ​ ​,
4πr2

μ ​0

r

m× r
4π
μ0

r3

m× r

B(r) = ∇ ×A = ​ ​ − ​ .
4π
μ ​0 [

r5

3r(m ⋅ r)
r3

m
]

U = −p ⋅E,   τ = p×E

p(r) = ​ρ(r ) r − r d r ,∫
V

′ ( ′ ) 3 ′

ϕ(R)  =  ​ ​ + O ​   ≈  ​ ​ ,
4πε ​0

1
R2

qd ⋅ R̂
(
R3

d3

)
4πε ​0

1
R2

p ⋅ R̂



Lorentz boost

Holomorphic or complex analytic examples

All polynomial functions in z with complex coefficients are entire functions (holomorphic in the whole complex
plane C), and so are the exponential function exp z and the trigonometric functions cos ⁡ 

 and  (cf. Euler's formula). The
principal branch of the complex logarithm function log z is holomorphic on the domain C \ { z ∈ R : z ≤ 0 }. The
square root function can be defined as  and is therefore holomorphic wherever the
logarithm log z is. The reciprocal function 1 / z is holomorphic on C \ { 0 }. (The reciprocal function, and any other
rational function, is meromorphic on C.)

As a consequence of the Cauchy–Riemann equations, any real-valued holomorphic function must be constant.
Therefore, the absolute value | z |, the argument arg (z), the real part Re (z) and the imaginary part Im (z) are not
holomorphic. Another typical example of a continuous function which is not holomorphic is the complex
conjugate z̅ . (The complex conjugate is antiholomorphic.)

E R = ​ .( )
4πε ​R0

3

3 p ⋅ − p( R̂) R̂

=F −∇U = −∇( ​ ⋅p ) =E ( ​ ⋅p ∇) .E

B(v) = ​ ​ ​ ​ ​ ​,

⎣

⎡ γ

−γv ​/cx

−γv ​/cy

−γv ​/cz

−γv ​/cx

1 + (γ − 1) ​

v2

v ​x
2

(γ − 1) ​

v2

v ​v ​y x

(γ − 1) ​

v2

v ​v ​z x

−γv ​/cy

(γ − 1)
v2

v ​v ​x y

1 + (γ − 1) ​

v2

v ​y
2

(γ − 1) ​

v2

v v ​z y

−γv ​/cz

(γ − 1) ​

v2

v ​v ​x z

(γ − 1) ​

v2

v ​v ​y z

1 + (γ − 1) ​

v2

v ​z
2

⎦

⎤

cos z = ​( exp(iz) + exp(−iz))2
1 sin z = − ​i( exp(iz) − exp(−iz))2

1

​ = exp ( ​ log z)z 2
1
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